HPC‐GAP: engineering a 21st‐century high‐performance computer algebra system

  • Symbolic computation has underpinned a number of key advances in Mathematics and Computer Science. Applications are typically large and potentially highly parallel, making them good candidates for parallel execution at a variety of scales from multi‐core to high‐performance computing systems. However, much existing work on parallel computing is based around numeric rather than symbolic computations. In particular, symbolic computing presents particular problems in terms of varying granularity and irregular task sizes that do not match conventional approaches to parallelisation. It also presents problems in terms of the structure of the algorithms and data. This paper describes a new implementation of the free open‐source GAP computational algebra system that places parallelism at the heart of the design, dealing with the key scalability and cross‐platform portability problems. We provide three system layers that deal with the three most important classes of hardware: individual shared memory multi‐core nodes, mid‐scale distributed clusters of (multi‐core) nodes and full‐blown high‐performance computing systems, comprising large‐scale tightly connected networks of multi‐core nodes. This requires us to develop new cross‐layer programming abstractions in the form of new domain‐specific skeletons that allow us to seamlessly target different hardware levels. Our results show that, using our approach, we can achieve good scalability and speedups for two realistic exemplars, on high‐performance systems comprising up to 32000 cores, as well as on ubiquitous multi‐core systems and distributed clusters. The work reported here paves the way towards full‐scale exploitation of symbolic computation by high‐performance computing systems, and we demonstrate the potential with two major case studies. © 2016 The Authors.Concurrency and Computation: Practice and ExperiencePublished by John Wiley & Sons Ltd.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Reimer Behrends, Kevin Hammond, Vladimir Janjic, Alexander Konovalov, Steve Linton, Hans‐Wolfgang Loidl, Patrick Maier, Phil Trinder
URL:https://onlinelibrary.wiley.com/doi/10.1002/cpe.3746
DOI:https://doi.org/10.1002/cpe.3746
ISSN:1532-0634
Journal:Concurrency and Computation: Practice and Experience
Publisher:Wiley
Document Type:Research Article
Language:English
Year of first Publication:2016
Release Date:2025/08/18
Volume:28
Issue:13
Page Number:31
First Page:3606
Last Page:3636
Faculties / Organisational entities:RPTU in Kaiserslautern / Fachbereich Mathematik / Schwerpunkt Algebra, Geometrie und Computeralgebra / AG Algebra, Geometrie und Computeralgebra
Open access state:Hybrid Open-Access
RPTU:Kaiserslautern
Research funding:Sonstige
Created at the RPTU:Yes